
Fundamentals of using Python

in Health Related Research

Nicola Orsini and Peter Alping

Schedule

Morning: 09:00-12:00 / Afternoon: 13:00-16:00

Monday-Wednesday: Room 326 / Thursday: Room 218 / Friday: Parker (Widerströmska)

Day / Block Topic

Monday Python Basics python

Tuesday Working with Data polars

Wednesday Data Visualization matplotlib

Thursday Data Modelling and Analysis scipy statsmodels lifelines sklearn

Friday Questions and Complementary Tools git just quarto + Take-Home Exam

https://staff.ki.se/campus-buildings-and-premises/bookable-premises/bookable-premises-on-campus-solna/326
https://staff.ki.se/campus-buildings-and-premises/bookable-premises/bookable-premises-on-campus-solna/218
https://staff.ki.se/campus-buildings-and-premises/bookable-premises/bookable-premises-on-campus-solna/parker

Learning Outcomes

After successfully completing this course, you should be able to:

Use the fundamentals of the Python programming language

Work with data by importing, describing, joining, grouping, and aggregating it

Create data visualisation for both data exploration and publication

Fit your data to basic regression models (linear, logistic, Cox)

Make a simple prediction model using machine learning techniques

Have an idea about complimentary tools, such as Git , Just , and Quarto

Examination will be in the form of an individual written exam (pass/fail).

Course material available at: pythondatascience.dev

This course aims to introduce the fundamental elements of the Python programming language, using

motivating examples from health-related research.

https://pythondatascience.dev/

Introduction

Python is a high-level, general-purpose

programming language

Increasing use in "data science"-type research,

rivalling R, STATA, SAS

Especially common in machine learning and

bioinformatics

Interpreted language (no compilation step)

Language / Interpreter / Editor

Programming Language: This is the human-

readable language that we write our code in to

instruct the computer to do things

Interpreter: Software that translates the

programming language into code that can be

understood and used by the computer

Editor: Software that we use to write our code and

save them as files. Can be any text editor (eg. MS

Notepad), but editors specifically designed for

coding provide additional features

My Code Others Code

Machine Code

Execution

Result
Error

Message

Interpreter

Program. Language Libraries/Packages

"Pytho
n Lan

guag
e"

"Install Python"

"Python Script"

"Run
Python
Code"

What does this look like in practice?

1. Create a new text file and name it my_script.py

2. Open the file with a text editor (eg. Notepad)

3. Write your code and save the file

4. Send it to the Python interpreter

Integrated Development Environment (IDE)

Software for working with code that has a lot of extra

functionality apart from just a text editor, such sending

code to the interpreter, debugging, and source control.

In this course, the recommended IDE is VSCode.

Code Editor - my_script.py

IDE

Terminal

x = 1
print(x)

%%
x = 1
print(x)

python my_script.py
1

✔ x = 1
1

https://code.visualstudio.com/

Why Programming Matters in Research

Common notion that programming is just a means to an end

Writing good code is not just about making things work

It is about making research reproducible, scalable, and trustworthy

The code is our experimental setup and as researchers we need to write clean, well-documented code

Reproducibility: Others should be able to run our code and get the same results

Efficiency: Knowing our tools allow us to iterate faster and generate more value

The best data scientists are professionals who understand that the code is the research

We should treat our code with the same respect as we would any other scientific instrument.

More on this topic: Richard McElreath - Science as Amateur Software Development (2023 edition) - YouTube

https://www.youtube.com/watch?v=8qzVV7eEiaI

Why Python?

Pros

Easy to read and learn

Combines accessibility with great versatility

Has a large ecosystem of libraries/packages

Is free and open-source

Handles everything from data management to

statistical analysis to machine learning

Cons

Not all statistical methods are implemented

Might not be what your supervisors/colleagues use

As with all research tools, Python is really only as

strong as what functionality has been implemented

through different libraries

Python for Data Science

NumPy - General scientific computing and linear algebra

SciPy - Optimization, integration, interpolation, statistics, and more

Pandas - Working with data (older)

Polars - Working with data (modern)

Matplotlib - Plotting and making figures

Statsmodels - Estimation of statistical models and tests

Lifelines - Time-to-event and survival analysis

Scikit Learn - Predictive data analysis

Since Python is a general-purpose programming language, we need to leverage the power of several Python

libraries to efficiently use it for data-science/research tasks.

https://numpy.org/
https://scipy.org/
https://pandas.pydata.org/
https://pola.rs/
https://matplotlib.org/
https://www.statsmodels.org/
https://lifelines.readthedocs.io/
https://scikit-learn.org/

Environment

To make our research reproducible, it is important

that we have a controlled research environment

For our programming environment to be controlled

and reproducible, we need to have a specification of

the Python and package versions

Packages in Python are pieces of code written by

others and (often) published on the Python Package

Index (PyPI)

We do this by setting up a virtual environment

(venv) and using a package manager (pip)

Modern tools can deal with both environment and

package management (uv)

Computer

Python

Packages

Project
1

Project
2

Installed
Application

System Installation

Computer

Python

Packages

Project
1

Project
2 Installed

Application

Packages Packages

Python Python

Virtual Environments

uv

uv is a relatively new and very fast virtual environment and package manager for Python

It can be used as a drop-in replacement for both venv and pip , combining both tools into one while also

providing better performance and dependency resolution

This will create a new virtual environment and install any packages in a .venv directory inside the project.

Anaconda

Another popular virtual environment and package manager, especially for data science tasks, is Conda

(Anaconda). Read more about it in the FAQ.

uv init # Create a new virtual environment

uv add package-name # Install a package

uv run python my_script.py # Run a Python script in the environment

https://anaconda.org/
https://anaconda.org/
https://pythondatascience.dev/python/faq/#what-about-conda--anaconda

